Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 500 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible; and proofs will not generally be submitted to authors. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1960). 13, 160

Crystal structure of Nb₃Be₂.* By Allan Zalkin, Donald E. Sands, and Oscar H. Krikorian, Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.

(Received 6 July 1959)

X-ray powder diffraction studies of the Nb–Be system indicated additional phases in the composition range between Nb and NbBe₂.

A sample of composition of $NbBe_{1.10}$ was prepared from the elemental powders contained in a BeO crucible by heating to 1550 °C. with an inductively heated molybdenum susceptor under argon. This material was repeatedly crushed, blended and reheated in vacuum at 1600–1750 °C. Weight losses, attributed to vaporization of Be, indicated a final composition of $NbBe_{0.7}$; the powder pattern showed the presence of some $NbBe_2$ and the new phases. Further heating to $NbBe_{0.4}$ resulted in the disappearance of the $NbBe_2$ pattern.

A single crystal in the shape of a parallelepiped, $0.03 \times 0.04 \times 0.15$ mm. in size, was selected from the crushed product, NbBe_{0.7}, and examined by the Weissenberg method. The cell is tetragonal with

$$a = 6.49 \pm 0.01, c = 3.35 \pm 0.01$$
 Å, $c/a = 0.517$

Assuming the atomic volumes of the elements to be additive, the volume of the unit cell is consistent with a stoichiometry of Nb_3Be_2 .

The structure is isomorphous with U_3Si_2 (Zachariasen, 1949). The space group is P4/mbm with two formula units per unit cell. The calculated X-ray density for Nb₃Be₂ is 6.99 g.cm.⁻³.

Thirty-one $h\bar{k}0$ intensities were measured with Mo $K\alpha$ radiation ($\lambda = 0.7107$ Å) on a Ge XRD-5 diffractometer equipped with a single-crystal orienter.

Refinement of the proposed structure by the leastsquares method yielded a reliability factor of 2.93%.

The atomic positions are:

The standard deviations were calculated by the method of Cruickshank (1949). The temperature factors used for the results shown in Table 1, are 0.68, 0.56 and 0.51 for Nb_I, Nb_{II} and Be, respectively. James and Brindley scattering factors for Nb (Klug & Alexander, 1954), and the Berghuis *et al.* (1955) scattering factors for Be were used.

These distances are in good agreement with those found in the other intermetallics of this system, namely NbBe₂, NbBe₃ (Sands, Zalkin & Krikorian, 1959), Nb₂Be₁₇

Table 1.	Observed a	and	calculated	hk0	structure factors	
for Nb ₂ Be ₂						

h	\boldsymbol{k}	F_o	F_{c}	h	\boldsymbol{k}	F_o	F_{c}
1	1	97	99	6	1	81	84
2	0	45	42	6	2	14	13
2	1	214	216	5	4	107	105
2	2	269	267	6	3	15	10
3	1	264	266	7	1	76	78
3	2	68	63	5	5	37	34
4	0	67	58	6	4	55	52
4	1	221	220	7	2	132	133
3	3	120	114	7	3	70	71
4	2	147	144	6	5	44	46
4	3	46	48	8	0	56	54
5	1	45	41	8	1	57	53
5	2	90	87	7	4	133	136
4	4	124	116	8	2	146	146
5	3	218	234	6	6	171	168
6	0	253	251				

The interatomic distances are as follows:

Be-1 Be	2.14 ± 0.08 Å	$Nb_{I} - 8 Nb_{II}$	2.91 ± 0.01 Å
-2 Nb_{I}	2.60 ± 0.04	-4 Be	$2 \cdot 60 \pm 0 \cdot 04$
-4 Nb_{II}	2.58 ± 0.04	$Nb_{II}-4 Nb_{I}$	2.91 ± 0.01
$-2 \ \mathrm{Nb_{II}}$	2.52 ± 0.04	-4 Be	2.58 ± 0.04
_		-2 Be	2.52 + 0.04

(Zalkin, Sands & Krikorian, 1959), and $NbBe_{12}$ (Batchelder & Raeuchle, 1957). In Nb_3Be_2 the Be atoms occur in pairs rather than in continuous 3-dimensional networks as in the other niobium beryllides.

In addition to the Nb₃Be₂ phase, the powder patterns showed the presence of a face-centered cubic phase with a = 10.94 Å. This phase has not been identified and may be an impurity or an additional Nb-Be phase.

We are indebted to Mr Vernon G. Silveira for much of the powder photography.

References

- BATCHELDER, F. W. VON & RAEUCHLE, R. E. (1957). Acta Cryst. 10, 648.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAL, A. L. (1955). Acta Cryst. 8, 478.

CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 154.

- KLUG, H. P. & ALEXANDER, L. E. (1954). X-ray Diffraction Procedures, New York: Wiley.
- SANDS, D. E., ZALKIN, A. & KRIKORIAN, O. H. (1959). Acta Cryst. 12, 461.
- ZACHARIASEN, W. H. (1949). Acta Cryst. 2, 94.
- ZALKIN, A., SANDS, D. E. & KRIKORIAN, O. H. (1959). Acta Cryst. 12, 713.

^{*} Work was performed under auspices of the U.S. Atomic Energy Commission.